Виртуальный кабинет

информация

Ярославский Центр телекоммуникаций и информационных систем в образовании

Дистанционные уроки

  • Избранные задачи по математике. Математическая индукция (часть 1)

    Дистанционный урок знакомит слушателей с принципом математической индукции, возможностями его использования при решении математических задач. Подробно разбирается порядок доказательства утверждений с помощью метода математической индукции. Порядок практического применения метода иллюстрируется как на примере задач на доказательство, так и при построении конструкций.
  • Избранные задачи по математике. Математическая индукция (часть 2)

    В ходе дистанционного урока продолжается знакомство с возможностями  использования метода математической индукции при решении задач. Особое внимание уделяется разбору задач комбинаторной геометрии, в том числе в 
     качестве примера приводятся два индукционных доказательства теоремы Хелли, основанные на разных подходах. Урок ориентирован на школьников, изучающих возможности применения различных математических методов при решении олимпиадных задач.
  • Избранные задачи по математике. Принцип Дирихле (часть 1)

    Учащимся предлагается ознакомиться с возможностями применения при решении олимпиадных задач одного из наиболее простых, но вместе с тем эффективным математическим методом решения задач, основанном на использовании принципа Дирихле. На доступных примерах из комбинаторики и комбинаторной геометрии вы сможете увидеть, как на первый взгляд сложные олимпиадные задачи получают простое и изящное решение.
  • Избранные задачи по математике. Принцип Дирихле (часть 2)

    Урок будет полезен тем, кто уже ознакомился с основными идеями и подходами к использованию принципа Дирихле при решении математических задач. Особое внимание уделяется решению задач из области комбинаторной геометрии. В рамках данного урока предлагается применить различные варианты принципа Дирихле в решении задач о покрытии (точек прямыми или наоборот, покрытии окружностями, треугольниками).
  • Избранные задачи по математике. Принцип крайнего

    На основе серии разнообразных ярких примеров предлагается изучить принцип решения математических задач, базирующийся на рассмотрении разного рода крайних объектов - наибольших и наименьших чисел, расстояний, углов. Принцип крайнего иллюстрируется решениями задач комбинаторной геометрии. В ходе дистанционного урока рассматриваются ставшие уже классичесими сложные олимпиадные задачи, с успехом решаемые с использованием принципа крайнего.
  • Избранные задачи по математике. Четность

    В ходе дистанционного урока показывается, как достаточно простая идея - проверка количества объектов на четность - оказывается крайне эффективной даже при решении сложных олимпиадных задач, а также задач комбинаторики и комбинаторной геометрии. С использованием принципа четности доказывается существование или отсутствие различных комбинаторных конструкций. Особое внимание уделяется обобщению различных математических задач и изучению возможности применения принципа четности для их решения.